## Exam Lie Groups in Physics

Date

November 9, 2016

Room

5419.0119

Time

9:00 - 12:00

Lecturer

D. Boer

- Write your name and student number on every separate sheet of paper
- Raise your hand for more paper
- You are not allowed to use the lecture notes, nor other notes or books
- The weights of the  ${\bf four}$  problems are given below
- Answers may be given in Dutch
- Illegible handwriting will be graded as incorrect
- Good luck!

# Weighting

Result 
$$=\frac{\sum points}{10} + 1$$

## Problem 1

- (a) Consider the sets of real numbers R and positive real numbers R<sup>+</sup>. Indicate the composition laws under which these sets form Lie groups? Explain your answers.
- (b) Show that  $R \cong R^+$ .
- (c) Show that  $R/Z \cong U(1)$ , where Z denotes the group of integers and U(1) the group of unitary  $1 \times 1$  matrices.
- (d) Consider the group  $(\{e^{i\theta/2}|0 \le \theta \le 4\pi\};\times)$ . Show whether this group is isomorphic to U(1) or not. If not, show how it is related.
- (e) Give an example from physics where U(1) plays a role as an exact or approximate symmetry.

### Problem 2

(a) Decompose the following direct product of irreps of the Lie algebra su(n)



into a direct sum of irreps of su(n), in other words, determine its Clebsch-Gordan series.

- (b) Write down the dimensions of the irreps appearing in the obtained decomposition for su(2) and su(3). Indicate complex conjugate irreps whenever appropriate.
- (c) Relate the decomposition for su(2) to the corresponding case of addition of angular momenta in Quantum Mechanics.

### Problem 3

Consider the Lie group U(n) of unitary  $n \times n$  matrices and its subgroup SU(n) of unitary  $n \times n$  matrices with determinant equal to 1.

(a) Write down the properties of the Lie algebras of U(n) and SU(n), including their dimensions.

Consider the Lie group O(n) of orthogonal  $n \times n$  matrices and its subgroup SO(n) of orthogonal  $n \times n$  matrices with determinant equal to 1.

- (b) Write down the properties of the Lie algebras of O(n) and SO(n), including their dimensions.
- (c) Explain why the dimensions for O(n) and SO(n) coincide, whereas for U(n) and SU(n) they do not.

### Problem 4

Consider the group of Lorentz transformations  $L^{\mu}_{\ \nu}$ .

(a) Demonstrate that invariance of the Minkowski metric under Lorentz transformations implies that  $(L_0^0)^2 \ge 1$ .

Consider the Lorentz algebra given by

$$\left[J^{j},J^{k}\right]=i\epsilon_{jkl}J^{l},\quad \left[J^{j},K^{k}\right]=i\epsilon_{jkl}K^{l},\quad \left[K^{j},K^{k}\right]=-i\epsilon_{jkl}J^{l}.$$

(b) Show by explicit calculation that the following two operators are Casimir operators of the Lorentz group:

$$C_1 = \vec{J}^2 - \vec{K}^2, \quad C_2 = 2\vec{J} \cdot \vec{K}$$

(c) Explain the use of Casimir operators.